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One of the goals of quantum chemistry is to accurately solve the Schrödinger equation for 

realistic systems. However, even mean-field Hartree-Fock or DFT calculations require 

diagonalization of the one-electron Hamiltonian matrix, which requires a computational time 

proportional to at least O(N3) for N atomic system. Furthermore, the scaling rapidly increases as 

the accuracy of the adopted wave function theory improves. In addition, as the speed of classical 

Neumann-type computers is getting saturated, the development of electron correlation theory 

that accurately solves the Schrödinger equation using novel-conceptual computers (quantum 

computers, classical annealing computers, etc.) has attracted significant attention. 

We have developed an O(N) quantum chemical calculation method called the divide-and-

conquer (DC) method [1], which was originally proposed by Yang and coworkers [2]. In the 

first half of this presentation, we will first review our recent developments in the DC methods; 

especially focusing on the automatic determination of the buffer region [2-4], which affects both 

the accuracy and computational time of the DC calculations, and the semi-empirical DC 

method. 

The Xia-Bian-Kais (XBK) transformation [5,6], which maps the second quantized 

Hamiltonian into the Ising Hamiltonian, is a method for optimizing the CI wavefunction using 

an annealing computer. In the latter half, we propose a method named the annealing + Bayesian-

optimization configuration interaction (ABCI) method to reduce the number of qubits used in 

the XBK transformation by introducing weight bits that are determined by the Bayesian 

optimization.  
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