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First of all, I would like to express my gratitude to the APATCC for awarding me the 2022 Pople Medal. 

In my medal plenary talk, I will provide snapshots of my group's contributions towards making the zoo 

of Density Functional Theory (DFT) methods more accessible to users while simultaneously giving 

useful insights to developers.  

I will begin by giving a brief overview of our work on the GMTKN55 database for General Main Group 

Thermochemistry, Kinetics and Noncovalent Interactions by highlighting how the insights for ground-

state DFT methods in this space goes beyond the original GMTKN55 publication,1 with my group 

having created and analysed data for more than 350 dispersion-corrected and uncorrected functionals.2 

The main part of my presentation will then deal with time-dependent DFT (TD-DFT) with special 

emphasis on double-hybrid density functionals (DHDFs). Earlier work has shown DHDFs to be 

accurate candidates for the calculation of excitation energies.3 However, the older generation of DHDFs 

still failed to describe long-range excitations, such as Rydberg and the more important charge-transfer 

excitations. This presentation discusses our range-separated DHDFs,4 which belong to some of the most 

balanced, robust and accurate DFT methods for excitation energy calculations in organic molecules,4,5 

incl. open-shell systems6 and aromatic excimers.7 
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