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 Conventional Monte Carlo and molecular dynamics simulations are greatly hampered by the 

multiple-minima problem, where the simulations tend to get trapped in some of astronomically large 

number of local-minimum energy states. In order to overcome this difficulty, we have been advocating 

the uses of generalized-ensemble algorithms which are based on non-Boltzmann weight factors (for 

reviews, see, e.g., Refs. [1-6] and for our recent algorithm developments and their applications, see, 

e.g., Refs. [7-17]).  With these algorithms we can explore a wide range of the conformational space.  

The advantage of generalized-ensemble algorithms such as multicanonical algorithm and replica-

exchange method (or, parallel tempering) lies in the fact that from only one simulation run, one can 

obtain various thermodynamic quantities as functions of temperature and other physical parameters 

such as pressure, etc. by the reweighting techniques.  In this talk, I will present the latest results of our 

applications of generalized-ensemble simulations to complex systems.   
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