Mechanistic Study of BPh₃-Catalyzed *N*-Methylation of Amines with CO₂ and Phenylsilane

Manussada Ratanasak¹, Tadashi Ema², Jun-ya Hasegawa¹

¹ Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan

² Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan Presenter email: manussada@cat.hokudai.ac.jp

Abstract

BPh₃ was found to catalyze the highly selective N-methylation of secondary amines at 30 ^oC with CO₂ (1 atm) and PhSiH₃ under solvent-free conditions [1]. In the present work, we have clarified the mechanism of BPh₃-catalyzed N-methylation of N-methylaniline with CO₂ and PhSiH₃ using the DFT calculations at ω B97XD/6-31G(d), 6-31++G(d,p) for the hydride of PhSiH₃ level of theory [2]. The DFT results revealed that the BPh₃ promotes the conversion of N-methylaniline and CO₂ substrates into a zwitterionic carbamate to give three-component species $[Ph(Me)(H)N^+CO_2^-\cdots BPh_3]$. The carbamate and BPh₃ act as the nucleophile and Lewis acid, respectively, for the cooperative activation of PhSiH₃ to generate borohydride [HBPh₃]⁻ species, which catalyzes the reduction of CO₂ to form key reactive species such as silvl formats, bis(silvl)acetals, and formaldehyde. These key CO₂-derived reactive species are essential for N-methylation reaction. In addition, we realized that a water molecule might act as a nucleophile to activate PhSiH₃. Hence, we have explored other mechanisms and suggested hypothetical water-assisted mechanisms for the generation of active [HBPh₃]⁻ species. Our results indicate that [HBPh₃]⁻ species can be generated relatively easily by the involvement of water. Interestingly, we have found that if acetonitrile is used as a solvent, acetonitrile can serve as a Lewis base to weakly activate carbonic acid or water, both of which can attack the silicon atom of PhSiH₃. The elucidation of this catalytic mechanism will be useful for the further progress of CO₂ fixation chemistry in future and development of new catalysts and reactions.

References

[1] Murata, T.; Hiyoshi, M.; Maekawa, S.; Saiki, Y.; **Ratanasak, M.;** Hasegawa, J.; Ema, T.*, Deoxygenative CO_2 Conversions with Triphenylborane and Phenylsilane in the Presence of Secondary Amines or Nitrogen-Containing Aromatics. *Green Chem.* **2022**, *24* (6), 2385-2390.

[2] Ratanasak, M.; Murata, T.; Adachi, T.; Hasegawa, J.*; Ema. T.*, Mechanism of BPh₃-Catalyzed *N*-Methylation of Amines with CO₂ and Phenylsilane: Cooperative Activation of Hydrosilane. *Chem. Eur. J.* 2022, e20220210 (Selected as Inside Front Cover & Selected as a Hot Paper).